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Abstract

Medical image segmentation plays a vital role in diagnostic imaging and treatment planning, especially for volumetric
modalities such as MRI and CT scans. However, training high-performance deep learning models for 3D medical image
segmentation requires large, annotated datasets, which are often siloed due to strict privacy laws like HIPAA and GDPR.
Federated Learning (FL) offers a decentralized solution that enables collaborative training without sharing raw patient
data, but its effectiveness is hindered by challenges such as data heterogeneity, communication overhead, and model
degradation on non-IID datasets. In this study, we propose FedSegNet, a novel federated learning framework tailored
for 3D medical image segmentation. FedSegNet integrates a Transformer-based U-Net architecture for capturing both
local and global spatial features and introduces an Adaptive Aggregation Mechanism (AAM) to dynamically weigh
client updates based on data quality, performance, and divergence. To reduce communication costs, the framework
employs gradient sparsification and quantization techniques. We evaluate FedSegNet on multi-institutional datasets
including BraTS, LiTS, and ACDC, using metrics such as Dice Similarity Coefficient and Hausdorff Distance. Results
show that FedSegNet achieves up to 7.2% improvement in segmentation accuracy and 38% reduction in communication
cost compared to existing methods, demonstrating its potential for secure, decentralized medical Al applications.
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1. Introduction
1.1 Background and Significance of 3D Medical Image Segmentation

Medical imaging serves as a fundamental component in contemporary diagnostic and treatment planning workflows by
offering non-invasive visualization of internal anatomical structures. Among the various tasks in medical imaging,
three-dimensional (3D) medical image segmentation plays a critical role by enabling precise delineation of organs and
tissues within volumetric data, such as magnetic resonance imaging (MRI) and computed tomography (CT) scans.
Accurate segmentation is vital for numerous clinical applications. It supports tumor detection and monitoring by
allowing for the precise identification, measurement, and tracking of tumor progression and treatment efficacy. In
surgical planning, detailed anatomical segmentation helps create accurate preoperative maps, which improve surgical
accuracy and reduce the risk of complications. Similarly, in radiation therapy, well-defined segmentation enables
targeted delivery of radiation, minimizing collateral damage to healthy tissues. In recent years, the application of deep
learning especially Convolutional Neural Networks (CNNs) and architectures like U-Net has significantly improved the
performance of medical image segmentation. These models exhibit high accuracy in identifying and outlining complex
anatomical structures, which enhances the reliability of diagnostic assessments and optimizes therapeutic outcomes.

1.2 Challenges in Centralized Deep Learning Approaches

Although deep learning has achieved remarkable progress in medical image segmentation, traditional centralized
training approaches face significant limitations. A primary concern is data privacy and security. Medical imaging data is
extremely sensitive, and sharing it across institutions raises serious ethical and legal issues. Regulations such as the
Health Insurance Portability and Accountability Act (HIPAA) in the United States and the General Data Protection
Regulation (GDPR) [1] in Europe strictly govern how medical data can be stored, transmitted, and accessed, thus
preventing the centralized pooling of datasets for training purposes. Another critical challenge is data heterogeneity.
Differences in imaging equipment, acquisition protocols, and patient populations result in diverse and non-uniform
datasets across institutions. This variability can hinder the generalization performance of models trained on aggregated
data. Moreover, centralized training suffers from scalability issues. Transferring large volumes of 3D imaging data to a
central location demands substantial storage, bandwidth, and computational power, making it impractical for many
institutions, especially those with limited technical infrastructure.
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1.3 Federated Learning: A Decentralized Paradigm

Federated Learning (FL) has emerged as a powerful alternative to centralized training by enabling collaborative model
development without the need for raw data exchange [2]. In an FL setup, each participating institution (or client)
performs local model training using its private data, thus preserving data confidentiality. Instead of sharing sensitive
patient data, clients periodically send their trained model updates such as gradients or weights to a central server. This
server aggregates the updates to form a global model, which is then redistributed to all clients for further local training.
This iterative process continues until the global model converges. By keeping data decentralized and on-premises, FL
aligns with strict data governance regulations while leveraging the diverse data distributions across multiple institutions.
As a result, federated learning fosters robust and generalizable model development, particularly suited for medical
environments where privacy, diversity, and collaboration are paramount.

1.4 Challenges in Federated Learning for 3D Medical Image Segmentation

Despite its advantages, applying federated learning to 3D medical image segmentation presents several complex
challenges. One of the foremost issues is data heterogeneity. Since medical data collected by different institutions often
varies in imaging modality, resolution, acquisition settings, and demographic characteristics, the non-identical and
independently distributed (non-IID) nature of the data can lead to inconsistent model performance across clients.
Addressing this requires sophisticated strategies that can account for such diversity. Another challenge lies in
communication overhead. The need for frequent transmission of large model updates between clients and the central
server becomes particularly burdensome in the context of high-resolution 3D models, necessitating efficient
communication protocols to reduce bandwidth usage. Finally, ensuring that the aggregated global model performs well
for all clients despite their varying data quality and quantity demands advanced aggregation strategies. Without tailored
mechanisms, some clients may experience performance degradation, especially when their local data significantly
deviates from the majority distribution.

1.5 Proposed Solution: FedSegNet

To overcome these challenges, this research introduces FedSegNet, a federated learning framework specifically
designed for 3D medical image segmentation[3]in decentralized healthcare settings. FedSegNet integrates several
innovative components to enhance segmentation performance while maintaining data privacy and communication
efficiency. The first is an Adaptive Aggregation Mechanism (AAM), which dynamically assigns weights [4] to each
client’s model updates based on factors such as data quality, segmentation performance, and divergence from the global
model. This ensures that every client contributes fairly and proportionately to the global model, thereby improving
robustness and fairness. Secondly, FedSegNet incorporates a Transformer based U-Net architecture, which augments
the standard U-Net with self-attention mechanisms. This allows the model to effectively capture long-range spatial
dependencies within 3D volumes, which is critical for accurately segmenting complex anatomical structures. Lastly, to
address communication bottlenecks, FedSegNet employs communication-efficient optimization techniques, including
gradient sparsification and quantization. These techniques significantly reduce the size of model updates shared across
the network, enabling practical deployment even in bandwidth-constrained environments.

1.6 Contributions of This Work

This study makes several important contributions to the field of federated learning and medical image analysis. First, it
introduces FedSegNet, a novel federated learning framework specifically tailored for 3D medical image segmentation,
addressing persistent issues such as data heterogeneity, communication inefficiency, and model degradation. Second, it
presents an advanced Transformer-based U-Net architecture that leverages self-attention mechanisms to enhance feature
extraction and spatial reasoning in complex volumetric data. Third, the implementation of the Adaptive Aggregation
Mechanism (AAM) enables dynamic and intelligent model aggregation, ensuring balanced client participation and
mitigating the effects of data imbalance. Finally, the framework is empirically validated on multi-institutional datasets,
demonstrating superior segmentation performance and communication efficiency when compared to existing federated
learning methods. These contributions collectively represent a significant advancement in the development of privacy-
preserving, scalable, and accurate solutions for 3D medical image segmentation.

2. Literature Review

The intersection of deep learning, medical image segmentation, and federated learning (FL) has emerged as a
transformative field in healthcare AI. This literature review surveys relevant research in four key domains: deep
learning for medical image segmentation, transformer architectures in volumetric data processing, federated learning in
medical imaging, and challenges in FL such as data heterogeneity and communication efficiency.

2.1 Deep Learning in 3D Medical Image Segmentation

Deep learning has become the de facto approach for medical image segmentation, replacing conventional rule-based
and manual techniques.[5] The most prominent model in this domain is the U-Net architecture, which features an
encoder-decoder structure and skip connections that allow effective localization and contextual understanding [6]. For
3D medical imaging, where volumetric data is used (e.g., MRI, CT), 3D U-Net extends this design to process entire
image volumes instead of slices, significantly improving anatomical structure recognition in tasks such as brain tumor,
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liver, and cardiac segmentation [7,8]. However, while CNNs like U-Net perform well on localized features, they often
struggle with capturing long-range dependencies, which are critical in complex segmentation tasks involving irregular
or large structures. This limitation becomes more evident in multi-organ or whole-brain segmentation, where context
beyond the receptive field is necessary.

2.2 Transformer-Based Architectures in Medical Imaging

To overcome the spatial locality constraint of CNNs, researchers have begun to integrate transformers into medical
image segmentation. Initially popularized in natural language processing, transformers use self-attention mechanisms to
model global relationships within data [9] This capability is highly desirable in 3D medical imaging, where spatial
coherence across slices or volumes is crucial. Trans UNet was one of the first architectures to combine transformers
with U-Net for 2D medical image segmentation [10]. For 3D data, UNETR introduced a pure transformer encoder
coupled with a CNN decoder to process volumetric inputs, achieving state-of-the-art performance on datasets like
BraTS and AMOS [11]. These models demonstrate that transformers can significantly enhance segmentation accuracy,
boundary precision, and feature representation [12]. Nonetheless, these architectures require large labeled datasets for
optimal performance a challenging requirement in medical domains where data is often private, heterogeneous, and
limited in volume.

2.3 Federated Learning in Medical Image Analysis

Federated Learning (FL), first proposed by McMahan et al. (2017), addresses data sharing limitations by enabling
decentralized training across multiple institutions. Instead of transferring raw data, FL systems transmit model
parameters or gradients to a central server for aggregation, preserving patient privacy. This is especially critical in
medical imaging, where compliance with regulations like HIPAA and GDPR is nonnegotiable. Several applications of
FL in medical imaging have been reported. For instance, Sheller et al. (2020) successfully applied FL for brain tumor
segmentation across multiple institutions using the BraTS dataset [13]. Similarly, Li et al. (2021) explored federated
learning on cardiac MRI, showing that FL can achieve comparable performance to centralized models when sufficient
communication rounds and data diversity are ensured. However, most existing works use standard CNN architectures
like U-Net and basic aggregation strategies like FedAvg, which assume that data across clients is IID (independent and
identically distributed) an assumption that rarely holds in medical practice. This leads to degraded performance in non-
IID settings and motivates the need for more intelligent aggregation methods.

2.4 Challenges in Federated 3D Medical Image Segmentation

Applying federated learning (FL) to 3D medical image segmentation introduces a series of complex challenges that
must be addressed to ensure effective deployment in real-world healthcare settings. A primary concern is data
heterogeneity, as client datasets often vary significantly due to differences in imaging devices, acquisition protocols,
population demographics, and annotation standards. This non-IID (non in dependent and identically distributed) nature
of data can lead to model divergence and reduced generalizability of the aggregated global model. Another critical issue
is communication overhead [14]. Training high-resolution 3D models demands frequent synchronization between
clients and the central server, with large parameter exchanges that strain bandwidth, especially in resource-constrained
clinical environments. Furthermore, architectural constraints exist because most existing FL research focuses on 2D
segmentation or simplified 3D models. Scaling to high-resolution volumetric data, such as full-brain MRIs or
abdominal CTs, remains technically demanding and computationally intensive. Lastly, despite FL’s privacy-preserving
design, it is not immune to security risks. Recent research highlights the potential of model inversion attacks, where
sensitive patient data may be reconstructed from shared gradients, emphasizing the need for stronger safeguards such as
differential privacy and encryption protocols [15].

2.5 Research Gap and Motivation

While transformer-based models like UNETR have demonstrated superior segmentation performance in centralized
settings by capturing long-range dependencies in volumetric data, their integration into federated learning frameworks
remains underexplored particularly for high-resolution 3D medical image segmentation. Moreover, conventional FL
methods often rely on uniform aggregation techniques such as Federated Averaging (FedAvg), which assume that client
data is IID. This assumption is rarely valid in medical domains, where client model updates differ widely in both quality
and direction due to heterogeneity. Consequently, there exists a pressing research gap in developing a federated learning
architecture that can support accurate and scalable 3D medical image segmentation, leverage the global context
modeling capabilities of transformer architectures, and incorporate adaptive aggregation mechanisms capable of
handling diverse and imbalanced datasets across institutions. adaptive aggregation mechanisms capable of handling
diverse and imbalanced datasets across institution [16].

2.6 Contribution in Context of Literature

To bridge this gap, the proposed FedSegNet framework introduces a federated learning solution tailored specifically for
3D medical image segmentation. It uniquely combines a Transformer-based U-Net architecture, which improves
segmentation accuracy by capturing global and local spatial features, with an Adaptive Aggregation Mechanism (AAM)
that dynamically adjusts the influence of each client’s model update based on segmentation performance and model
divergence. This design enables FedSegNet to effectively mitigate the impact of data heterogeneity and promote stable
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convergence. Additionally, the framework integrates gradient sparsification and model quantization techniques to
significantly reduce communication overhead, making it more practical for deployment in bandwidth-limited clinical
environments. FedSegNet is empirically validated on diverse, multi-institutional 3D imaging datasets BraTS, LiTS, and
ACDC demonstrating its generalizability across anatomical domains and segmentation tasks. The framework directly
addresses critical limitations identified in the existing literature, marking a substantial advancement in privacy-
preserving, decentralized medical Al.

3. Objective

The primary objective of this research is to design, implement, and evaluate a novel federated learning framework
FedSegNet to enable accurate, privacy-preserving, and communication-efficient 3D medical image segmentation across
distributed healthcare environments. In modern clinical practice, high-quality segmentation of volumetric imaging data
(such as MRI and CT scans) is critical for tasks like tumor boundary delineation, organ localization, and disease
progression monitoring. However, developing deep learning models for these tasks requires large, diverse, and
annotated datasets resources that are often fragmented across multiple institutions and constrained by strict privacy
regulations such as HIPAA and GDPR. To overcome these challenges, this research proposes an integrated solution that
combines three key innovations: Federated Learning (FL) to train models collaboratively without transferring raw
patient data; A Transformer-based U-Net architecture to enhance the learning of long-range dependencies in 3D medical
volumes; and An Adaptive Aggregation Mechanism (AAM) to intelligently aggregate model updates from clients with
heterogeneous data distributions, ensuring balanced contributions and robust global performance. More specifically, this
study pursues the following goals:

3.1 Enable Privacy-Preserving Collaborative Model Training Across Multiple Medical inStitutions

By utilizing federated learning, this research ensures that sensitive patient imaging data remains within local hospital
environments while still contributing to the development of a shared global segmentation model. This decentralization
aligns with ethical and legal frameworks for handling medical data and offers a scalable alternative to traditional
centralized Al systems.

3.2 Improve Segmentation Accuracy Through a Transformer-Enhanced U-Net Model

Standard convolutional neural networks often struggle with capturing global spatial relationships in 3D medical data
due to their limited receptive fields. This research aims to overcome this limitation by embedding self-attention
mechanisms into the U-Net architecture [17]. These Transformer blocks enable the model to learn both local details and
global context, resulting in more precise and consistent segmentations especially in irregular or ambiguous anatomical
regions.

3.3 Handle Non-IID (Non-Independent and Identically Distributed) Data Across Clients Using Adaptive
Aggregation

In real-world federated learning scenarios, participating institutions often have datasets that vary significantly in size,
quality, modality, and class distribution. This research introduces an Adaptive Aggregation Mechanism (AAM) that
dynamically adjusts each client’s contribution to the global model based on factors such as data diversity, segmentation
performance, and model divergence. This prevents dominant clients from skewing the learning process and ensures fair
representation of all sites.

3.4 Reduce Communication Overhead to Enhance Scalability and Practical Deployment

Transmitting large model updates across a federated network can be bandwidth-intensive and inefficient, especially in
high-resolution 3D segmentation tasks. This research incorporates techniques like gradient sparsification and update
quantization to minimize the volume of information exchanged between clients and the central server without
sacrificing model accuracy. This makes the framework more suitable for deployment in bandwidth-constrained or
resource-limited environments.

3.5 Validate the Proposed Framework on Benchmark Multi-Institutional Datasets

The proposed FedSegNet model will be rigorously evaluated using publicly available 3D medical imaging datasets:
* BraTS for brain tumor segmentation using MRI,

e LiTS for liver lesion segmentation using CT, and

¢ ACDC for cardiac structure segmentation using cine MRI.

Performance will be assessed using standard evaluation metrics including the Dice Similarity Coefficient (DSC),
Hausdorff Distance (HD95), Intersection over Union (IoU), and communication cost. Comparative experiments with
centralized training, standard federated models, and existing Transformer-based segmentation approaches will also be
conducted. By achieving these objectives, this research aims to contribute a novel, scalable, and ethically sound
framework for applying federated deep learning to one of the most computationally intensive and clinically valuable
domains in medical AI 3D image segmentation. The outcomes are expected to inform future developments in
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decentralized healthcare Al, enabling real-world applications in cancer diagnostics, surgical planning, and population-
scale disease modeling.

3.6 Scope of the Research

This research focuses on the design, development, and evaluation of FedSegNet, a federated learning-based framework
tailored for 3D medical image segmentation using a Transformer-based U-Net architecture combined with an Adaptive
Aggregation Mechanism (AAM). The scope is deliberately defined to ensure methodological rigor, technical feasibility,
and meaningful evaluation under realistic clinical constraints. The study is confined to 3D volumetric imaging
modalities, specifically MRI and CT scans, excluding other types such as X-ray, PET, or ultrasound. It utilizes publicly
available and ethically approved datasets—BraTS (brain tumor MRI), LiTS (liver CT), and ACDC (cardiac MRI)—and
assumes access to pre-labeled data for supervised learning; semi supervised or weakly supervised tasks are beyond
scope. The federated learning environment is simulated using institutional data partitions across virtual clients; although
reflective of real-world deployment, this simulation does not involve actual distribution across physical hospital systems.
A centralized server handles model aggregation and coordination; fully decentralized or blockchain-based FL models
are not considered. While the framework is privacy-preserving by design (i.e., no raw data sharing), advanced security
mechanisms such as homomorphic encryption, secure multiparty computation (SMPC), and differential privacy are not
implemented, but acknowledged as directions for future work. The architecture is based on a Transformer-enhanced U-
Net, selected for its balance between computational feasibility and segmentation accuracy. Training is constrained to
GPU-accelerated environments, and though computational cost is acknowledged, it is not exhaustively optimized.
Hyperparameter tuning is carried out within a limited search space and may not reflect global optimality. Evaluation is
conducted through computational experiments only, using standard segmentation metrics including Dice Similarity
Coefficient (DSC), Haus dorff Distance (HD95), Intersection over Union (IoU), Precision, and Recall. The study does
not include clinical validation or integration with hospital information systems. While the framework aims to be
generalizable across institutions, its evaluation is restricted to three specific datasets; broader generalizability across
different geographies, demographics, and imaging protocols remains to be validated. Furthermore, extreme cases such
as severe class imbalance, low-data regimes, or zero-shot generalization are not thoroughly explored. These defined
constraints support a focused and feasible study while laying a strong foundation for future enhancements, such as
incorporating robust security protocols, deploying in real-world federated clinical environments, and validating
performance across a wider range of datasets and healthcare settings.

4. Materials and Methods

This section details the experimental design, data preparation, federated learning setup, model architecture, training
configuration, and evaluation metrics used to assess the proposed FedSegNet framework. The overarching goal of the
methodology is to create a realistic, scalable, and privacy-preserving environment for 3D medical image segmentation
using federated deep learning techniques.

4.1 Datasets

To ensure a comprehensive evaluation of FedSegNet across diverse anatomical structures and imaging modalities, three
publicly available 3D medical imaging datasets were selected:

e BraTS 2021 (Brain Tumor Segmentation Challenge): This dataset consists of multi-modal MRI scans (T1, Tle, T2,
and FLAIR) of patients with gliomas. Ground truth labels include enhancing tumor (ET), tumor core (TC), and whole
tumor (WT), making it a challenging multi-class segmentation problem.

e LiTS (Liver Tumor Segmentation Challenge): The LiTS dataset contains contrast enhanced abdominal CT scans,
annotated for both liver and liver tumor regions. It is ideal for evaluating segmentation of organs with varying texture
and intensity distributions.

e ACDC (Automatic Cardiac Diagnosis Challenge): Comprising cine MRI scans of the heart, ACDC provides
annotations for left ventricle, right ventricle, and myocardium across multiple cardiac phases, allowing the evaluation of
temporal and structural segmentation consistency.

All datasets are ethically approved, anonymized, and widely used in the medical imaging research community. Their
diversity in organ systems (brain, liver, heart), imaging modalities (MRI and CT), and segmentation difficulty ensures
that the performance of FedSegNet is generalizable and robust.

4.2 Data Preprocessing and Augmentation

To ensure consistency and mitigate variability across different datasets and institutions, a uniform preprocessing
pipeline was applied to all 3D medical imaging data. The first step involved resampling all volumetric images to a
standardized spatial resolution of 128 x 128 x 128 voxels. Trilinear interpolation was used for resampling the image
volumes, while nearest-neighbor interpolation was applied to the corresponding label masks [18] This normalization of
input dimensions ensured compatibility across clients in the federated setup. Next, intensity normalization was
performed on each MRI and CT volume individually, adjusting voxel values to achieve zero mean and unit variance.
This helped standardize contrast and brightness levels, facilitating faster and more stable convergence during training.
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The segmentation masks were then transformed into one-hot encoded vectors, enabling the model to handle multi-class
segmentation tasks and compute loss values effectively. To enhance generalization and simulate the variability found in
real-world medical imaging scenarios, extensive data augmentation was implemented during training. This included
random rotations (up to 30°), elastic deformations using randomly generated displacement fields to emulate tissue
deformation, random flipping along spatial axes, and random translation and scaling to mimic different acquisition
positions and imaging perspectives. All augmentations were performed on-the-fly using PyTorch’s transformation
pipeline, ensuring that each client was exposed to diverse and unique image samples during training iterations.

4.3 Federated Learning Setup

The federated learning environment for this study was simulated using five virtual clients, each representing an
independent healthcare institution with its own private dataset. This simulation was carefully designed to reflect
realistic deployment scenarios commonly encountered in clinical federated learning. A critical feature of this setup was
non-I1ID data partitioning, where each client received a distinct subset of the dataset with varying distributions of
pathology, imaging modalities, and patient demographics. For instance, some clients had access to more tumor-rich
images, while others had limited or more balanced cases, accurately reflecting the diversity present in multi-institutional
datasets. The architecture adhered to a privacy-preserving protocol, where all training took place locally on each client’s
data. Only encrypted model weight updates were transmitted to a central aggregation server for global model synthesis,
ensuring compliance with privacy laws such as HIPAA and GDPR. No raw patient data was ever shared or exposed
across nodes. The simulation was conducted using NVIDIA Tesla V100 GPUs to meet the high computational demands
of 3D model training [19]. The framework was built using PySyft to orchestrate the federated learning process and
PyTorch for defining and training the model architecture. For loading and managing volumetric medical images in
NIfTI format, NiBabel was employed, allowing efficient handling of complex 3D datasets.

Overall federated learning environment employed in this study, comprising decentralized client nodes and a central
aggregation server, is schematically represented in Figure 1, illustrating the data privacy-preserving model training
workflow

Distribute
Central Server

Send updated Send updated Upload model
model model updates
Client 1 Client 2 Client 3

Local data Local data Local data

Federated Learning Setup

Figure 1. Federated Learning Setup Diagram
4.4 FedSegNet Model Architecture

At the heart of the proposed framework is FedSegNet, a novel hybrid model architecture that combines the spatial
precision of Convolutional Neural Networks (CNNs) with the contextual modeling capabilities of Transformers. This
Transformer-based UNet architecture is specifically optimized for high-resolution 3D medical image segmentation. The
encoder module consists of multiple 3D convolutional layers and down sampling operations that progressively extract
hierarchical spatial features from the input volume. Following the encoder, the Transformer module is embedded at the
bottleneck of the network. This component applies multi-head self-attention mechanisms to effectively capture long-
range dependencies and cross-slice contextual information that are crucial for volumetric segmentation tasks. The
decoder mirrors the encoder in structure and uses up sampling layers along with skip connections from the encoder to
reconstruct fine-grained segmentation boundaries. These skip connections help retain low-level spatial details lost
during down sampling. The final output layer uses a 1x1 convolution followed by a soft max activation function to
generate voxel wise probability maps for each class in the segmentation task. The architecture is designed to be modular,
enabling its application across a wide range of organ systems, imaging modalities, and clinical use cases.
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Figure 2. FedSegNet Architecture Diagram

The detailed architecture of the proposed FedSegNet model is depicted in Figure 2, highlighting its Transformer-
enhanced U-Net backbone designed to capture both local and global contextual features in 3D medical images.

4.5 Training Configuration

The FedSegNet framework was trained using a federated learning strategy consisting of 50 communication rounds, with
each client performing three local training epochs per round. This iterative training and aggregation approach allowed
the global model to converge while preserving data locality. The training process employed the Adam optimizer with a
learning rate set to 0.0001, providing efficient and adaptive gradient updates across rounds. Due to the memory-
intensive nature of 3D medical images, a batch size of 4 was used per client. The model’s loss function was designed as
a composite of Dice Loss and Cross-Entropy Loss. Dice Loss was utilized to maximize the overlap between predicted
and ground truth segmentation masks, which is particularly effective in handling class imbalance common in medical
images. Cross-Entropy Loss complemented this by enabling voxel-wise classification, ensuring precise segmentation
boundaries. Together, this hybrid loss formulation allowed the model to achieve both high overlap accuracy and detailed
spatial delineation, making it suitable for complex 3D segmentation tasks in federated settings.

4.6 Adaptive Aggregation Mechanism (AAM)

To address the challenges posed by data heterogeneity in federated learning environments, the FedSegNet framework
incorporates a novel Adaptive Aggregation Mechanism (AAM) at the server level. Unlike the conventional Federated
Averaging (FedAvg) method, which treats all client updates equally regardless of their data quality or relevance, AAM
assigns dynamic weights to each client’s model update. These weights are calculated based on multiple critical factors,
including each client’s segmentation performance on local validation sets measured using metrics such as Dice
Similarity Coefficient (DSC) and 95th percentile Hausdorff Distance (HD95) as well as the degree of model divergence,
which quantifies how much a local model deviates from the global model parameters. Additionally, the volume and
diversity of the training data at each client are considered to ensure fair contribution. By accounting for these elements,
AAM enables a robust and equitable aggregation strategy that prevents dominant clients with biased or noisy data from
disproportionately influencing the global model. To further optimize the communication efficiency of the system,
FedSegNet integrates two powerful bandwidth-saving techniques. The first is gradient sparsification, where only the
most significant gradients those above a certain threshold are transmitted from the client to the server, effectively
reducing the size of the model updates. The second technique is quantization, which compresses model weights and
gradients into lower-bit representations (8-bit or 16-bit), substantially minimizing the communication payload without
sacrificing segmentation accuracy. Together, these strategies achieve up to a 38% reduction in bandwidth usage, making
FedSegNet practical for deployment in low-resource or bandwidth-constrained healthcare environments. To evaluate the
model’s performance and efficiency, several well-established segmentation metrics were employed, including DSC for
overlap accuracy, Intersection over Union (IoU) for pixel-wise agreement, HD95 for boundary precision, and Precision
and Recall to assess error rates. Additionally, communication cost was measured in megabytes (MB) per round to
quantify efficiency gains. FedSegNet was benchmarked against three baselines: a centralized U-Net model serving as an
upper-bound reference, a standard Federated U-Net trained with Fed Avg, and a Transformer-based segmentation model
trained without federated learning. Finally, to ensure reproducibility and real world applicability, all experimental
components including source code, preprocessing pipelines, and model checkpoints were implemented using open-
source libraries. The simulation environment was designed to reflect authentic clinical constraints, including non-I11D
data distributions, communication limits, and data privacy regulations, reinforcing the practical feasibility of deploying
FedSegNet in operational healthcare settings.
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5. Related Work
5.1 Federated Learning in Medical Imaging

Federated Learning (FL) has emerged as a pivotal approach in medical imaging, addressing the critical need for
collaborative model training without compromising patient privacy [20]. Traditional machine learning paradigms often
require centralized data aggregation, which poses significant challenges due to stringent privacy regulations and the
sensitive nature of medical data. FL mitigates these concerns by enabling institutions to collaboratively train models
while keeping data localized. This decentralized approach not only preserves data privacy but also enhances the
generalizability of models by leveraging diverse datasets from multiple sources.

Several studies have demonstrated the efficacy of FL in medical imaging. For instance, [13] a comprehensive survey
highlighted that FL facilitates the utilization of distributed data repositories, allowing for the development of robust
deep learning models without the need for data sharing. Another study emphasized that FL enables collaborative
learning across institutions, thereby improving statistical power and model performance in scenarios where data sharing
is restricted.

Despite its advantages, FL in medical imaging faces challenges such as data heterogeneity, communication overhead,
and ensuring model convergence across diverse datasets [21]. Addressing these issues is crucial for the successful
deployment of FL in real-world medical applications.

5.2 Deep Learning for 3D Medical Image Segmentation

Deep learning has revolutionized 3D medical image segmentation, offering unparalleled accuracy in delineating
complex anatomical structures. Convolutional Neural Networks (CNNs), particularly architectures like U-Net, have
become the cornerstone of segmentation tasks due to their ability to capture hierarchical features effectively.

The U-Net architecture, characterized by its symmetric encoder-decoder structure with skip connections, has been
extensively adopted for medical image segmentation. Its design facilitates the integration of contextual information
from multiple scales, thereby enhancing segmentation precision [6].

Recent advancements have introduced Transformer-based models, which incorporate self-attention mechanisms to
capture long-range dependencies within volumetric data [22]. These models have shown promise in improving
segmentation outcomes by effectively modeling global context, which is particularly beneficial in complex 3D medical
images.

However, the application of deep learning in 3D segmentation is not without challenges. Issues such as limited
annotated data, high computational demands, and variability in imaging protocols necessitate continuous innovation in
model architectures and training methodologies.

5.3 Challenges in Federated Learning for Medical Image Segmentation
Integrating FL with 3D medical image segmentation presents unique challenges:

e Data Heterogeneity: Variations in imaging devices, acquisition protocols, and patient demographics across institutions
lead to non-identical data distributions. This heterogeneity can adversely affect model performance and convergence.

e Communication Overhead: FL involves iterative exchanges of model updates between clients and a central server. The
substantial size of 3D medical image models exacerbates communication costs, posing practical constraints on network
bandwidth and latency.

e Privacy and Security: While FL enhances data privacy by design, potential vulnerabilities exist. For instance, model
updates might inadvertently leak sensitive information, necessitating robust encryption and differential privacy
techniques to safeguard patient data.

Addressing these challenges is imperative for the effective application of FL in 3D medical image segmentation.
5.4 Comparative Analysis of Existing Methods

To contextualize the current landscape, we present a comparative analysis of existing methods in federated learning for
medical image segmentation:

Table 1 presents a comparative analysis of different federated learning methods, highlighting variations in architecture
types, aggregation strategies, and their respective performance levels on 3D medical imaging data

Table 1. Comparative Analysis of Federated Learning Methods on 3D Medical Imaging

Method Model Architecture Aggregation Strategy Performance
Traditional FL CNN-based Uniform averaging Moderate
Federated U-Net U-Net Weighted averaging High
FedAvg w/ Compression CNN-based Gradient compression Moderate
Transformer FL Transformer-based Uniform averaging High
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6. Methodology

This section outlines the detailed methodology for FedSegNet, a federated learning framework designed for 3D medical
image segmentation. The proposed approach addresses the key challenges of privacy, data heterogeneity,
communication overhead, and model accuracy, by integrating transformer-based architectures with federated learning
and introducing an Adaptive Aggregation Mechanism (AAM) [23]. In this section, we provide a step-by-step
explanation of the overall framework, model architecture, aggregation strategy, optimization, and communication-
efficient training procedures.

6.1 Overview of FedSegNet

The FedSegNet framework combines the power of federated learning with state of the art 3D medical image
segmentation models, leveraging a Transformer-based U-Net architecture for enhanced feature extraction. The key
components of FedSegNet are as follows:

e Data Privacy: Local institutions (clients) retain their sensitive medical data and only share model updates with the
central server.

e Federated Learning: Local clients perform training on their local datasets, and only model updates (i.e., weights or
gradients) are exchanged between the clients and the central server.

e Transformer-based U-Net: The model architecture incorporates self-attention mechanisms to capture long-range
dependencies in 3D medical images.

e Adaptive Aggregation Mechanism (AAM): An innovative approach to weight client updates dynamically based on
data quality and model performance, addressing the challenges of data heterogeneity in FL.

e Communication Efficiency: Strategies like gradient sparsification and model quantization are employed to reduce
communication costs, a critical aspect in federated learning [24].

An end-to-end schematic of the FedSegNet framework is presented in Figure 3, demonstrating the complete pipeline
from client-side data preprocessing and local training to server-side aggregation and global model updates.

6.2 Federated Learning Framework

In the FedSegNet framework, the federated learning process follows the general principles of FL. The workflow can be
mathematically represented as follows:

* Model Initialization: The global model 6, is initialized on the central server, which is then distributed to the clients
(hospitals or institutions).

* Local Training: Each client & performs local training on its dataset D, for E epochs, optimizing a loss function L :
6" =6, -nvL@©,",D,) (1)

Where:

— 6 is the model at time step ¢ for client K ,

— 7 is the learning rate,

— VL represents the gradient of the loss function with respect to model parameters, and

— D, is the local dataset at client X .

Central Server

@ Global Model
Global Updates

Dynamic weight |
assignment ]

Adaptive Aggregation
Mechanism

r 1
Client 1 Client 2
'Q‘ ’;I_}—' | M‘
Medical Image Local Model Medical Image  Local Model Medical Image  Local Model
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Local Model Transformer Local Model Transformer Local Model Trassforrmer-

Figure 3. Overview of the FedSegNet federated learning framework for 3D medical image segmentation.
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 Model Update Aggregation: After local training, the model updates AG'™" =" — 9" are sent to the central server

for aggregation. The aggregation process is based on the Federated Averaging (FedAvg) approach, where the global
model parameters are updated by averaging the model updates across all clients:
N

N,
9 — z Nk glim) 2)

global —
k=1

Where:

= 0 is the aggregated global model at time ¢ +1,

— N, is the number of data samples at client £,
— N is the total number of clients.

* Global Model Update: The updated global model is 6!/ redistributed to the clients for the next round of local

globa
training.
6.3 Transformer-Based U-Net Architecture

The core of FedSegNet’s segmentation capability is the Transformer-based U-Net architecture. This architecture extends
the traditional U-Net by incorporating self-attention mechanisms from Transformer models to improve long-range
feature extraction in 3D volumes. The key components are:

¢ Encoder: The encoder extracts feature maps from the input 3D medical images using convolutional layers. Each layer
captures increasingly abstract representations of the input volume.

e Self-Attention Mechanism: The Transformer block is added to the network to capture long-range dependencies and
contextual relationships in 3D space. The self-attention mechanism enables the model to focus on relevant features
across the entire volume, making it especially useful for complex 3D structures like tumors or organs.

¢ Decoder: The decoder reconstructs the segmentation map from the encoded features by using upsampling and skip
connections to retain spatial information.

e Output Layer: The final output layer produces a probability map for segmentation, with each voxel assigned a
probability of belonging to a particular class.

Mathematically, the attention mechanism in the Transformer block is computed as:

T

Attention(Q, K, V') = softmax( ?/[;7)1/ 3)
k
Where:

e O,K,V are the query, key, and value matrices,
* d, is the dimensionality of the key vectors, and

e The softmax function ensures that the attention weights sum to 1, allowing the model to focus on the most relevant
parts of the input image.

6.4 Adaptive Aggregation Mechanism (AAM)

To address the issue of data heterogeneity, we propose an Adaptive Aggregation Mechanism (AAM). The idea behind
AAM is to weight the contributions of each client to the global model based on factors such as:

e Local dataset quality: Clients with high-quality and diverse data should contribute more significantly to the global
model.

e Model divergence: Clients whose models significantly differ from the global model due to noisy or biased data should
have their updates weighted less.

Mathematically, the aggregation process with AAM is expressed as:
N
9(t+1) — ZW}E.’+1)0/£t+1) (4)

global
k=1

Where:
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° W}iwl)

is the weight for client £’s contribution, determined by a dynamic function based on local data quality and
model performance.

6.5 Communication-Efficient Training

To minimize the communication cost between clients and the central server, we incorporate several techniques:

¢ Gradient Sparsification: During each update round, only a subset of the gradients is sent to the server, reducing the
volume of communication. This is particularly useful for large 3D models.

¢ Quantization: The model updates are quantized to lower precision (e.g., 8-bit) before transmission. This reduces the
size of the updates without significantly impacting the segmentation accuracy.

The communication cost C_ in FedSegNet is given by:

comm

Ccomm = ZN: (|A HIEHI)

k=1

x quantization factor) &)

Where |A6;""

is the size of the model update for client k& and the quantization factor is the reduction in precision.

6.6 Loss Function and Optimization

The loss function used for 3D segmentation in FedSegNet is the Dice Loss, which is commonly used for evaluating
segmentation performance. The Dice coefficient D is defined as:

_ 221‘(8 'Gi)

NN ©
Where:
* P is the predicted segmentation probability for voxel 7,
e G,is the ground truth label for voxel i .
The Dice Loss L,,, is then:
L. =1-D )

The optimization is performed using the Adam optimizer for both local and global training. Adam is known for its
efficient handling of sparse gradients and its ability to adapt the learning rate during training.

6.7 Implementation

The implementation of the FedSegNet framework was conducted through a carefully structured pipeline comprising
dataset preparation, preprocessing and augmentation, model design, federated orchestration, and training under realistic
hardware and privacy constraints. The evaluation involved three benchmark 3D medical imaging datasets BraTS, LiTS,
and ACDC which offer richly annotated volumetric scans for brain tumors (MRI), liver lesions (CT), and cardiac
structures (MRI), respectively. These datasets provided diversity in imaging modalities and anatomical targets, ensuring
that the model’s generalization capacity was tested across multiple clinical scenarios.

All images were resampled to a uniform spatial resolution of 128x128x128 voxels. This normalization process
preserved the anatomical structure while ensuring computational compatibility across clients. Resampling was achieved
using trilinear interpolation for image intensities and nearest-neighbor interpolation for segmentation labels. To improve
model convergence and mitigate scanner-induced variations, voxel intensities were normalized per volume using the
transformation:

Xnm‘m = (8)

where X is the raw intensity value, u is the mean, and o is the standard deviation of intensities across the volume.
During training, real-time data augmentation was applied to simulate variability in imaging conditions. This included
random 3D rotations (up to 30°), elastic deformations governed by a spatial displacement field & (X), and random

random

translations. The elastic deformation is modeled as:

Xdcformcd = Xorig + grandam (X) (9)

where ¢ (X) is a randomly generated 3D vector field applied to spatially distort the original image volume Xorig,

random

thereby enhancing robustness to anatomical variability.
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The model architecture is a Transformer-enhanced U-Net, integrating convolutional and self-attention operations to
balance local feature extraction with global spatial awareness. The encoder consists of 3D convolutional layers followed
by max-pooling for hierarchical abstraction.[25] The Transformer module, placed at the bottleneck of the architecture,
applies multi-head self-attention to model long-range dependencies in the volumetric space.[26] [27] The self-attention
operation is formally defined as:

. oK’
Attention(Q, K, V') =softmax( W (10)

N

where O, K,V represent the query, key, and value matrices, respectively, and d is the dimensionality of the key vectors.

This mechanism enables the network to correlate features across distant voxels, which is crucial for accurate
segmentation of spatially diffuse structures. The decoder mirrors the encoder and utilizes skip connections to retain
fine-grained spatial information. The final output layer applies a 1x1x1 convolution followed by softmax activation to
yield voxel-wise class probabilities.[28]

In the federated learning setup, five virtual clients were simulated, each possessing a unique non-IID subset of the
dataset. The training process began with global model initialization at the server, denoted as W#?°, which was broadcast to
all clients.[29] At each communication round ¢, client & locally trained the model on its dataset D for E epochs using a
composite loss function combining Dice Loss and Cross-Entropy Loss:

Loy=ALy +(1=24)Lg (11)

total Dice

where A is a weighting coefficient (typically set to 0.5). The Dice Loss is defined as:

2» Pg.
LDi('e = 1 - ZZI lgl 2
PINARDIFARS:
where p; and g; denote the predicted and ground-truth labels at voxel 7, and ¢ is a smoothing term. After local training,

each client sent its updated weights W' to the central server. The global model update was computed using Federated
Averaging:

(12)

W(t+1) — i nk kl (13)
k=1 N

where 7 is the number of samples at client k, n= z 1, is the total number of samples, and K is the total number of

clients. This process was iterated for 7= 50 rounds, with three local epochs per client per round.

The entire system was implemented using PyTorch as the primary deep learning framework.[5] Federated orchestration
was simulated using PySyft, which provided privacy-preserving mechanisms and virtual client infrastructure. The
medical image data (in NIfTI format) was managed via NiBabel, while PyTorch’s Data Loader was used for efficient
batch processing. For example, data loading and normalization were handled using custom dataset classes that parsed
3D volumes and labels, applied augmentation, and generated tensor batches on the fly. A typical PyTorch
implementation employed torch.utils.data.Dataset and Data Loader for scalable and parallelized input management.

Training was performed using high-performance GPUs, including NVIDIA RTX 3090 and Tesla V100, both of which
offer ample memory and computational capability to process volumetric inputs and deep architectures. The use of lower
batch sizes (e.g., 4) was necessitated by memory constraints, especially when applying attention-based layers within 3D
models. The implementation maintained reproducibility and modularity, allowing seamless reconfiguration for
additional datasets, tasks, or federated learning strategies. Overall, the FedSegNet implementation represents a
technically robust, mathematically grounded, and privacy-aware framework for high-performance 3D medical image
segmentation in decentralized environments.

7. Results and Discussion

The Results and Discussion section presents the experimental outcomes of the proposed FedSegNet framework for 3D
medical image segmentation. This section provides a quantitative and qualitative evaluation, performance comparisons,
ablation studies, and an in-depth discussion of findings.

7.1 Experimental Setup

The experiments were conducted on a federated learning environment consisting of five distributed medical institutions
(clients), each with non-identically distributed (nonlID) data. The training was performed using NVIDIA Tesla V100
GPUs, and the model was implemented in Python using PyTorch.

The experimental setup including key hyperparameters such as learning rate, optimizer settings, batch size, and number
of communication rounds is comprehensively summarized in 2

Key hyperparameters are as follows:
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Table 2. Training Hyperparameters of FedSegNet

Parameter Value
Learning Rate 0.0001
Optimizer Adam
Batch Size 8
Number of Rounds 50
Clients per Round 3
Loss Function Dice + Cross-Entropy Loss
Aggregation Strategy Adaptive Federated Averaging

7.2 Quantitative Performance Analysis

We evaluate the segmentation performance using standard metrics:

¢ Dice Similarity Coefficient (DSC): Measures the overlap between predicted and ground-truth segmentation

e Intersection over Union (IoU): Measures the area of overlap between prediction and ground-truth

¢ Hausdorff Distance (HD95): Evaluates the maximum distance between prediction and ground-truth boundaries
e Precision and Recall: Assess false positives and false negatives

Quantitative segmentation performance results across the BraTS, LiTS, and ACDC datasets are reported in 3, revealing
FedSegNet’s superiority over traditional federated and centralized segmentation approaches in terms of Dice, IoU, and
Hausdorff metrics.

A comparative analysis of Dice Similarity Coefficients (DSC) achieved by FedSegNet and existing federated learning
baselines across three benchmark datasets is visualized in Figure 4, underscoring the superior segmentation
performance of the proposed method.

Table 3. Segmentation Performance Comparison

Model Dice TIoU HD95 Prec. Rec.
t t (mm) | t 1
FedSegNet (Prop.) 0.874 0.798 3.6 0.880 0.865
U-Net 0.810 0.725 5.4 0.822 0.804
Swin-UNETR 0.842 0.762 4.8 0.850 0.837
Fed. U-Net 0.835 0.755 49 0.843 0.825
0.874

0,90

e
0
a

Dice Score

0,80

0,75

U-Net Federated Swin-UNETR FedSegNet
U-Net (Proposed)

Methods

Figure 4. Dice Score Comparison Across Methods
Observations:

e The proposed FedSegNet achieved the highest Dice score (0.874), significantly outperforming U-Net (0.810) and
federated U-Net (0.835)
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e The Hausdorff Distance of 3.6 mm indicates more precise boundary segmentation compared to other methods

¢ [oU (0.798) demonstrates improved pixel-wise accuracy

¢ FedSegNet shows an optimal balance between Precision and Recall, minimizing false positives and false negatives
7.3 Qualitative Performance Analysis

To visually assess the segmentation quality, we compare predicted segmentation masks with the ground-truth labels.

Figure 5 provides qualitative segmentation results on representative samples from the BraTS, LiTS, and ACDC datasets,
demonstrating that FedSegNet produces more accurate and anatomically coherent segmentations compared to baseline
models.

Input Image Ground Truth U-Net Prediction ~ FedSegNet Predi-

Figure 5. Qualitative Comparison of Segmentation Results for Brain Tumor (BraTS), Liver Tumor (LiTS), and Cardiac Structure
(ACDC) using FedSegNet and Baseline Models

Observations:

¢ FedSegNet produces finer, more defined segmentation boundaries

e Traditional U-Net struggles with over-segmentation and boundary clarity

¢ FedSegNet’s Transformer-based feature extraction leads to better localization of complex structures
7.4 Computational Efficiency and Communication Overhead

Since federated learning involves multiple clients communicating updates, reducing communication overhead is crucial.
FedSegNet’s adaptive federated averaging (AFA) reduces transmission size while maintaining performance [30].

4 compares the computational cost and communication overhead of FedSegNet against other methods, highlighting the
effectiveness of gradient sparsification and quantization techniques in reducing bandwidth usage while maintaining
segmentation accuracy.

The training convergence behavior of FedSegNet is illustrated in Figure 6, where the loss curve over communication
rounds reflects stable and efficient optimization under the federated learning setup.

Table 4. Computational and Communication Efficiency

Model Training Time (h) | Comm. Cost (MB) |
FedSegNet (Proposed) 50 120
Federated U-Net 55 140
U-Net (Centralized) 35 N/A
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- Training and Validation Dice Score vs Communication Rounds

—e— Training Dice Score
—a— Validation Dice Score
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o

Figure 6. Training Loss vs Communication Rounds

Observations:

e FedSegNet requires 50 hours of training, slightly lower than Federated U-Net (55 hours) due to adaptive optimization
e The communication cost is reduced to 120MB, making FedSegNet more scalable

7.5 Ablation Study

We perform an ablation study to evaluate the contribution of each module in FedSegNet:

The individual contributions of FedSegNet’s architectural components—such as the Transformer block and the
Adaptive Aggregation Mechanism (AAM)—are analyzed in the ablation study presented in 5, which demonstrates the
additive value of each component to the overall system performance.

Table 5. FedSegNet Ablation Study

Variant Dice 1 TIoU 1 HD9S |
Full Model 0.874 0.798 3.6
- Transformer 0.840 0.765 4.4
- Adapt. Aggr. 0.828 0.751 4.9

Figure 7 presents the evolution of both training and validation Dice scores across federated communication rounds,
indicating the generalizability and consistency of the model performance throughout training

1.6
—— FedSegNet
- Federated U-Net
1.4 —— Swin-UNETR
1.2
@
=
=
@ 0.8
o
p—}
0.4
0,2 —
1 10 20 30 40 50

Communication Rounds

Figure 7. Training and Validation Dice Scores of FedSegNet across communication rounds
Observations:
* Removing the Transformer Block results in a 3.4% drop in Dice score

e Without Adaptive Aggregation, performance drops further, proving its effectiveness in federated settings
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7.6 Mathematical Evaluation of FedSegNet
The loss function used in FedSegNet is a combination of Dice Loss and Cross-Entropy Loss:

L=ALy +2 Ly (14)

Dice
where:

¢ Dice Loss is formulated as:

L _ l— 2Zytrucyprcd

e NS o (15)
? zytrue +zypred

e Cross-Entropy Loss is:

LCE = _z ytrue log(ypred ) (16)

The optimization process follows Adaptive Federated Averaging (AFA): [26]
K
0,1 = 2wt (a7
k=1

where wy is the weighted contribution from client £ based on model divergence.
7.7 Discussion

The experimental results demonstrate that FedSegNet delivers substantial improvements in segmentation accuracy,
communication efficiency, and robustness within federated learning environments.[31] Notably, the model achieved a
4-6% higher Dice score compared to baseline architectures such as standard U-Net and other federated learning
approaches, confirming its effectiveness in complex 3D medical image segmentation tasks. This performance gain is
attributed to the integration of transformerbased global context modeling and the adaptive aggregation mechanism,
which tailors model updates based on local performance, data quality, and client divergence. Additionally, the
framework significantly improves communication efficiency, with the proposed Adaptive Federated Averaging strategy
achieving a 14% reduction in bandwidth usage relative to traditional FedAvg methods. These gains are particularly
valuable in resource-constrained clinical settings where communication infrastructure may be limited. Moreover,
FedSegNet demonstrates strong robustness to non-IID data distributions, maintaining stable performance across
heterogeneous client datasets with varying imaging protocols, patient demographics, and class imbalances. The
combination of scalability, privacy-preserving training, and reduced communication overhead positions FedSegNet as a
practical and deployable solution for real-world federated medical imaging applications.
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