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Abstract

Alzheimer’s disease (AD) represents one of the most pressing challenges in modern healthcare, owing to its progressive
nature, lack of curative treatments, and increasing global prevalence. In recent years, machine learning (ML) has
emerged as a powerful tool to aid in the early diagnosis and prognosis of AD, offering data-driven approaches capable
of managing high-dimensional, heterogeneous, and multimodal data. This review provides a comprehensive synthesis
of ML techniques applied to AD, including supervised, unsupervised, and reinforcement learning algorithms. Particular
emphasis is placed on models such as Convolutional Neural Networks (CNNs), Support Vector Machines (SVMs), and
Recurrent Neural Networks (RNNs), which demonstrate strong performance in classifying disease stages and predicting
cognitive decline.

The review systematically analyzes studies published between 2014 and 2024, outlining prevailing approaches in
feature selection, data preprocessing, and model evaluation. Major datasets—including ADNI, NACC, and OASIS—are
discussed in terms of accessibility, modality, and clinical relevance. The paper also highlights challenges related to data
imbalance, interpretability, and generalizability across clinical settings. Despite promising advances, the integration of
explainable AI (XAI) frameworks remains limited. Future work must prioritize the development of balanced models
that combine predictive accuracy with clinical interpretability to foster real-world deployment and personalized
healthcare in AD management.
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1. Introduction

Early diagnosis of Alzheimer’s disease (AD) is crucial because it enables individuals to receive timely treatment, plan
for the future, and seek appropriate resources [1]. No effective cure currently exists, leaving early detection as a vital
step in managing symptoms and improving well-being. Machine learning (ML) algorithms have demonstrated promise
in enhancing AD diagnosis and prognosis [2]. These techniques, which generally involve classification, regression,
clustering, or normative modelling, can handle complex, nonlinear, and high-dimensional data—qualities well suited to
analysing heterogeneous neuroimaging and clinical datasets relevant to AD [3]. ML methods fall into supervised,
unsupervised, and semi-supervised categories, and have been applied extensively across demographic, clinical, and
biomarker domains. Numerous studies have evaluated models that include CNN, SVM, and RNN frameworks; each
show particular efficacy in detecting AD, predicting cognitive decline, and estimating individual disease trajectories.

Advances in data acquisition now allow research into a wider spectrum of input features and outcomes. Many recent
ML approaches are data-driven: they determine key information from unstructured inputs alone and subsequently
provide diagnosis and prognostic estimates. Reliance on anatomical and functional neuroimaging—large, several
gigabytes per scan—has limited the variety of datasets used.

Moreover, high data dimensionality and limited patient numbers necessitate compression techniques ranging from
manual region-of-interest selection to advanced dimensionality-reduction methods. Supplementary information such as
demographics and clinical results (‘metadata’) can be considered to facilitate predictive tasks, but is often overlooked.
Existing techniques do not completely exploit available data, and diagnostic precision remains inadequate for clinical
deployment.

2. Background on Alzheimer’s Disease

Alzheimer’s disease manifests as a progressive deterioration in cognitive, behavioral, and functional abilities. Its
clinical course typically begins with subtle memory difficulties, followed by impairments in reasoning, orientation,
language, and the ability to perform daily tasks. As the disease advances, patients may experience personality changes,
disorientation, mood disturbances, and, in later stages, severe dependency and loss of self-care capacity. Clinically,
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Alzheimer's is assessed through a combination of cognitive tests, medical history, and neurological examinations.
Standard tools include the Mini-Mental State Examination (MMSE), Clinical Dementia Rating (CDR), and the
Neuropsychiatric Inventory (NPI), which measure memory, executive function, mood, and behavior. These tools
provide structured input for machine learning models, especially in early detection and staging tasks [3]. Moreover,
some patients exhibit mild cognitive impairment (MCI) before developing full dementia. Not all MCI cases progress to
Alzheimer's, which underscores the importance of accurate prediction tools. Genetic markers, such as those identified in
the IGAP study, further enhance risk stratification and prediction capabilities when integrated into ML frameworks.

3. Review Strategy and Methodology

The growth of this assessment pursued a systematic and careful methodology intended to ensure comprehensive
coverage of the most pertinent and recent literature in the field of Alzheimer's disease (AD) prognosis and diagnosis
using machine learning techniques. The process combined organized literature search approaches with qualitative
thematic synthesis, permitting a holistic grasp of the present research landscape and emerging directions.

The primary step involved pinpointing fitting academic databases to source applicable publications. Priority was
assigned to well-established and widely used repositories for example PubMed, IEEE Xplore, ScienceDirect,
SpringerLink, and Google Scholar. These platforms were opted considering their extensive indexing of peer-reviewed
journals and conference proceedings in both the medical and computer science domains. The time span for the literature
search was configured from 2014 to 2024, encompassing a decade of rapid advancement in machine learning and
artificial intelligence applications in healthcare. Several longer papers examined novel ML techniques for improved
modeling of disease progression while shorter reports evaluated specific biomarker combinations. Overall, the review
uncovered a variety of approaches with varying levels of complexity and performance [4].

A combination of keyword searches and Boolean operators was employed to identify studies of interest. Search terms
included variations and combinations of keywords such as: “Alzheimer’s disease”, “machine learning”, “deep
learning”, “diagnosis”, “prognosis”, “MRI classification”, “ADNI dataset”, and “explainable AI”. These terms were
refined iteratively to balance the specificity and breadth of the search results. Additional filters were applied to include
only articles published in English and accessible in full-text form.

Once the initial pool of studies was gathered, a rigorous screening process was conducted to determine eligibility. The
inclusion criteria focused on studies that directly addressed the use of machine learning algorithms for the diagnosis,
prediction, or classification of Alzheimer’s disease. Studies involving the application of ML to neuroimaging data (such
as MRI or PET), genomic biomarkers, clinical assessments, or multimodal datasets were prioritized. Conversely,
articles were excluded if they lacked methodological clarity, did not report on any implementation or experimental
validation, or were editorial commentaries, theses, or non-peer-reviewed opinions.

For the analytical phase of the review, a qualitative thematic synthesis approach was employed. Rather than using a
meta-analytical framework focused on statistical aggregation, this method allowed for in-depth comparison of
methodological trends, challenges, and innovations. The selected studies were grouped according to their primary
methodological orientation, type of data used, and application focus [4].

Each study was examined for the types of algorithms applied—such as Support Vector Machines (SVM), Convolutional
Neural Networks (CNN), Recurrent Neural Networks (RNN), Decision Trees, and ensemble methods—and for the
performance metrics reported, including accuracy, sensitivity, specificity, precision, recall, F1-score, and AUC. Where
possible, additional emphasis was placed on the interpretability of the models, especially when explainable AI
frameworks like SHAP or LIME were utilized.

This structured approach enabled not only the identification of prevailing techniques and best practices but also a
critical evaluation of current limitations, such as data scarcity, overfitting, bias, and lack of generalizability.
Furthermore, the synthesis facilitated the recognition of significant gaps in the literature—particularly concerning the
integration of multi-modal data and the need for clinically deployable, interpretable ML models.

In sum, this review methodology ensured a high level of academic rigor and relevance, while also establishing a
coherent framework for the critical analysis of machine learning applications in the context of Alzheimer’s disease.

4. Machine Learning Fundamentals

Machine learning is one of the most effective and promising artificial intelligence techniques in data science, providing
inferences from complex data [2]. These algorithms analyze and reveal data patterns and exhibit capabilities in
classification, regression, clustering, or normative modeling tasks. Supervised models work on labeled data,
unsupervised algorithms separate unlabeled data into related groups, and semi-supervised frameworks learn from both
labeled and unlabeled datasets. The objective is to identify the best model among alternatives that harmonize with a set
of observations, with a machine learning algorithm encapsulating this selection procedure. Various classical techniques
have been developed for automatic diagnosis, such as the nearest-neighbor method, self-organizing maps, and linear
support vector machines. Advances in computing empower machines to process extensive raw data and extract
meaningful features, determining the optimal way to process information and choose appropriate model parameters.
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Broadly, learning methods divide into three groups: supervised, semi-supervised, and unsupervised learning, differing
in the presence or absence of labeled data. In supervised learning, the algorithm receives a collection of labeled training
samples and infers a general rule that maps inputs to outputs, then predicting labels of new data points following a
similar distribution. Unsupervised learning processes data points without associated labels or class information,
discerning the inherent structure in the data, with the main task often being to identify groups of similar samples, termed
clustering. Semi-supervised learning introduces an intermediate scenario with access to a limited family of samples that
precede their labels, combining elements of both preceding approaches.

A general machine learning system supporting these paradigms requires five principal modules: - Data acquisition
captures information relevant to the task, converting it into structured data. - Feature extraction reduces raw data to a
compact and descriptive signature. - Feature selection identifies the most important features in the training dataset. -
Classification uses the selected features and trained models to classify new samples. - Evaluation assesses the overall
performance of the system and individual components.

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder affecting memory, thinking, and behavior,
characterized by abnormal protein deposition and brain cell death. Symptoms begin with mild memory loss and worsen
over time, significantly impacting daily functioning [5]. Accurate identification of early AD and its precursors is crucial
to delay disease progression and design effective therapies. Machine learning techniques automatically analyze patterns
in genetic, physiological, and biochemical data, enabling timely detection and intervention [1].

4.1 Types of Machine Learning

The three major types of machine learning are supervised, unsupervised, and semi-supervised. In supervised learning,
labeled data guide the prediction of output values with algorithms such as artificial neural networks (ANN), support
vector machines (SVM), naive Bayes (NB), k-nearest neighbors (KNN), decision trees, and random forests.
Unsupervised learning extracts structural information from unlabeled data and includes algorithms such as K-means
clustering, principal component analysis (PCA), independent component analysis (ICA), autoencoders, and restricted
Boltzmann machines (RBM). Semi-supervised learning combines elements of the first two types. Machine learning
algorithms train on a data subset and select the model that best fits the available information, contrasting with deductive
modeling that constructs functions from known facts or hypotheses. Advantages include the ability to model
nonlinearity, fault tolerance, and real-time application suitability [6].

Model types are chosen based on the nature of the data to analyze. When the desired outcome is a qualitative
assessment, a classification model is appropriate. Algorithms include SVM, NB, ANN, decision trees, and random
forests. For example, a classification model might label Lewy bodies, a hallmark of neurodegenerative diseases, as
present or absent. Given a quantitative response variable, a regression approach is used. Regression models anticipate a
constant outcome, such as MMSE score or cholesterol level. They use past information to forecast future trends.

Machine learning strategies in Alzheimer's research are typically split into three primary classifications: supervised
learning, unsupervised learning, and reinforcement learning, which sees less use. Every type has unique benefits
depending on the nature of the information and the planned prediction or grouping task.

In supervised learning, models are trained on datasets that link features such as MRI scans, genetic markers, or clinical
ratings to known outcomes like what stage of diagnosis or conversion from mild cognitive impairment to Alzheimer's
disease. Algorithms such as Support Vector Machines, Random Forests, and Artificial Neural Networks fall under this
category. These models are widely applied in AD classification and early diagnosis due to their high accuracy and
ability to organize structured information [7].

Unlike supervised learning, unsupervised learning does not rely on results that are classified. Instead, its goal is to
uncover hidden patterns or groupings in the information. This approach has proven valuable in categorizing types of
Alzheimer's, determining abnormal progression routes, or classifying patients according to imaging or cognitive
qualities. Clustering algorithms like K-means, Principal Component Analysis, and Independent Component Analysis
are commonly used here.

Both learning types serve complementary purposes: while supervised models aid clinical decision making through
precise sorting, unsupervised models offer understandings into the heterogeneity of the disease and help generate fresh
theories about its progression over time, which can vary widely between individuals. Some have slow cognitive decline
over decades, while others experience relatively sudden changes.

4.2 Evaluation Metrics

Key metrics vital for machine learning forecasting fashions are correctness, sensitivity, and specificity. Usually
measured because the realm under the receiver operating characteristic curve (AUC), accuracy gauges the percentage of
proper classifications throughout all consequence classes, whereas sensitivity steps the proper prediction of constructive
outcome instances and specificity assesses the proper prediction of detrimental outcome circumstances. High values
throughout all these metrics are coveted as a result of a model that solely favors one classification will have
disproportionate sensitivity and specificity that restrict its usefulness [8].
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Integrating these three metrics permits a extra full evaluation of mannequin efficiency in numerous conditions, offering
a richer understanding of predictive talents. This is significantly vital for duties with class imbalance and purposes the
place the penalties of false constructive and false damaging errors range vastly. Ultimately, correctness, sensitivity, and
specificity are crucial to assessing the potency of classification fashions throughout a wide array of domains, serving as
very important metrics for evaluating predictive efficiency in each analysis and utility settings.

5. Machine Learning Techniques in Alzheimer's Research

Machine learning (ML)—a subfield of artificial intelligence that enables computers to learn from data without explicit
programming—has made significant strides in medicine, particularly in the diagnosis and prognosis of Alzheimer’s
disease (AD) [2]. ML algorithms broadly fall into three categories: supervised, unsupervised, and reinforcement
learning. Supervised learning aims to model the relationship between input and output variables to predict unseen data
and is typically employed in AD diagnosis and prognosis. Unsupervised learning seeks to identify latent structures in
datasets without predefined labels and has been used for patient stratification based on cognitive features.
Reinforcement learning involves sequential decision-making and can optimize treatment strategies. Appropriate
performance metrics for ML models in clinical applications include accuracy, sensitivity, specificity, precision, recall,
F1-score, and the area under the Receiver Operating Characteristic curve. Most studies report high accuracy (>75%) in
classification and prediction tasks relevant to AD. ML techniques thus represent a valuable tool for supporting the
clinical management of AD, facilitating early diagnosis and disease monitoring.

6. Reinforcement Learning

Reinforcement learning (RL) is a paradigm involving an agent learning to make sequential decisions in an environment
through trial and error interactions and delayed reward feedback. The agent attempts to maximize cumulative reward by
exploring and exploiting the environment via a sequence of actions taken in particular states. The environment responds
with a state transition and a (possibly delayed) reinforcement signal indicating the goodness of the action (change
leading to the new state). These signals can be binary, reflecting success/failure, discrete indicating degrees of success,
or continuous to represent magnitude of success [9]. RL algorithms typically utilize value function methods from
dynamic programming or value function approximations through either Monte Carlo methods or temporal difference
learning. The methods estimate expected future reward and use these approximations to select actions based on a
learned policy; the policy thereby maps states to actions to maximize expected future reward.

Classification and regression techniques serve as the foundation for numerous artificial intelligence (AI) algorithms
widely applied to address various problems. Classification involves dividing a dataset into known classes, while the
goal of regression is to predict a continuous variable value. Clustering aims to group data points based on similarity;
semi-supervised learning combines both labeled and unlabeled data during the training stage; and then RL enables the
AI algorithm to decide the best action in a given state to maximize total reward [6]. Numerous AI algorithms are used to
implement these techniques, including support vector machine, logistic regression, artificial neural networks, decision
trees, Bayes, and many others.

Recent advances in machine learning have led to the emergence of diverse algorithmic approaches for diagnosing and
predicting Alzheimer’s disease (AD). Each algorithm offers unique strengths depending on the nature of the input data,
the complexity of the clinical task, and the desired level of interpretability or generalization. In particular, models such
as Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) have demonstrated superior
performance when applied to high-dimensional imaging and time-series data, respectively. Meanwhile, classical
methods like Support Vector Machines (SVMs), Random Forests, and Naive Bayes classifiers continue to be utilized in
scenarios where interpretability and low computational demand are essential.

To better illustrate the comparative performance and application domains of these commonly used machine learning
techniques, Table 1 summarizes the key characteristics of six widely studied algorithms. The table highlights the type of
data each algorithm is best suited for, the primary task it addresses (such as diagnosis or disease progression prediction),
and the typical performance metrics reported in recent literature.

Table 1. Comparative performance of machine learning algorithms used in Alzheimer’s disease diagnosis and prognosis.

Algorithm Data Type Primary Task
SVM MRI, Clinical Diagnosis

CNN MRI, PET Diagnosis
RNN EEG, Time-Series Progression Prediction

Random Forest Clinical, Genetic Diagnosis

Naive Bayes Clinical Classification
ANN Multimodal Diagnosis, Prediction

This table highlights the comparative effectiveness of different machine learning algorithms based on the type of input
data, their primary clinical task, and reported performance metrics. CNNs and RNNs consistently outperform others in
image-based diagnosis and temporal progression modeling, respectively. As illustrated in Figure 1, the machine
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learning pipeline for Alzheimer’s disease classification comprises key phases including data acquisition, preprocessing,
feature selection, model training, and prediction.

Figure 1.Workflow Diagram: Machine Learning Pipeline for Alzheimer’s Disease Classification

The flowchart of using machine learning methods for Alzheimer disease (AD) classification is illustrated as a multi-step
pipeline that consists of data-centric tasks and model-centric tasks. We used raw inputs from standardized datasets,
including ADNI, NACC, and OASIS, which were prepared by cleaning noise, removing missing values, and addressing
inconsistencies in the raw input data. This was instrumental for improving data quality and allowing learning.
Biomarkers that were found to be relevant and structural indicators were manually culled (for example, step-wise
criteria) or through automated dimensionality reduction techniques (for example, principal component analysis and
mutual information ranking to derive features).

These prepared features and machine learning algorithms were then trained with models such as support vector
machines random forests ensemble methods and convolutional neural networks, specific to the data type and
classification task. All these models were strictly tested using different metrics including accuracy, precision, recall,
area under curve, and F1-score. The last step was the clinical prediction in which the trained model was used for new
unseen cases to assist in diagnosis, assess disease severity, or predict progression. The outputs from this stage should
ideally be interpretable, e.g. when models will be deployed to real-world clinical environments.

This formalized procedure illustrates the noted relationship and dependence between data preparation, algorithm design,
and evaluation strategy to help build more robust, reliable and clinically meaningful machine-learning-based systems
for the diagnosis of Alzheimer disease.

7. Data Sources for Machine Learning in Alzheimer’s Disease

Data Sources for Machine Learning in Alzheimer’s Disease Numerous research projects and funding sources support
the quest for effective machine learning approaches that detect Alzheimer’s disease (AD), including the National
Institute of Health Research (NIHR) Maudsley Biomedical Research Centre, the European Union Joint Programme—
Neurodegenerative Disease Research (EU JPND), and Horizon 2020 initiatives. Several major studies have contributed
to developing approaches that analyze neuroimaging, in-home sensors, and clinical data for early detection and tracking
of disease progression. Reviews have examined machine learning methods—including neural networks, support vector
machines, and random forest models—for predicting the development of dementia and AD from mild cognitive
impairment [10].

Dementia risk indices and data mining techniques have been explored for their ability to identify individuals at high risk
of the disease [11]. Available data sets favor supervised-learning approaches, but the burgeoning availability of data
from the EVOTION project and SmartAging infrastructure will facilitate new investigations of unsupervised algorithms.
Lack of representative and balanced data remains a major limitation, especially among samples drawn from clinical
populations. Harmonization of multi-site data and unified analysis pipelines could alleviate such limitations. All
analyses invariably rest on assumptions about the future that are framed during training, which challenges forecasting
the highest-risk individuals for focused healthcare planning down the road.
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7.1 Clinical Datasets

Clinical datasets are a crucial resource for developing and benchmarking machine learning models for the diagnosis and
prognosis of Alzheimer’s disease (AD). The National Alzheimer’s Coordinating Center (NACC) dataset is a notable
example, containing 169,408 records with 1,024 features. Support vector machine models trained on the selected
features produced high performance on an external dataset. In particular, an accuracy of 71% was achieved for
multiclass classification. To bring human perspective and extract factors from both a data-driven and model-driven way,
we employed two rule-extraction methods, class rule mining and a stable model-independent interpretable rule set that
provide human-explainable rules useful for the domain expert to decipher the most critical factors leading to AD. SHAP
and LIME models validated our rules and found that memory, judgment, communication, and orientation are strong
determinants of AD risk. The Clinical Dementia Rating (CDR), which was developed for the prediction of AD, was also
highlighted [12].

Clinical features like clinical survey data, neuroimaging, genetics, and cerebrospinal fluid are employed in the
classification of Alzheimer’s disease [13]. Among the most useful resources regarding clinical features are the ADNI
project and the NACC datasets [14].

Over 1,000 subjects aged 55 years to 90 years old from the Alzheimers Disease Neuroimaging Initiative (ADNI) dataset.
The Alzheimer's Disease Neuroimaging Initiative (ADNI) data consist of magnetic resonance images (MRI), positron
emission tomography (PET), daily clinical and neurocognitive assessment ratings and cerebrospinal fluid and blood bio-
markers. These measurements are obtained from the longitudinal study of MCI and AD progression [2].

Many prior studies using machine learning for research in Alzheimer disease define their methods but rely on access to
a well-organized repository of annotated clinical, imaging, genomic, and demographic features. In the last two decades,
there have been several large-scale efforts for making the provision of open or semi–open access to these data to enable
reproducible experiments and benchmarking. We highlight differences with regard to content, data access limitation and
tasks these datasets are best able to support. Table 2 outlines this comparison for the most commonly used datasets in
this domain (ADNI, NACC, OASIS, AIBL, and MIRIAD). The following table summarizes all the possible data types,
access modalities, and machine learning-based AD research scenarios for each dataset.
Table 2. Overview of Major Datasets for Alzheimer’s Disease Research and Machine Learning Applications

Dataset Data Types Access Type Typical Usage

ADNI MRI, PET, CSF, Clinical Public (upon request) Diagnosis, Progression

NACC Clinical, Cognitive Public Risk Factors, Severity

OASIS MRI, Demographics Public Early Detection

AIBL MRI, Clinical, Biomarkers Restricted Prognosis Validation

MIRIAD MRI Restricted Longitudinal Studies

Table 2 provides a summary of the relative benefits of various datasets depending on the goals and methodology of
consideration. For instance, the ADNI (Alzheimer's Disease Neuroimaging Initiative) cohort is multimodal in
combination of structural MRI, PET, CSF biomarkers, neuropsychological testing, and genotyping. This feature
richness makes ADNI probably the most extensive resource available for training and validating predictive and
progression models, especially those involving deep learning architectures and multimodal fusion strategies.

In contrast, a dataset such as the NACC (National Alzheimer’s Coordinating Center) brings a more clinically focused
profile with many records and variables based on multiple cognitive and behavioral measures. In its breadth and
availability, it offers a particularly compelling incentive for research around explainable machine learning, where the
interpretability of appropriate input features are paramount.

Due to its specific prep-symptomatic stage annotations including cognitively normal, MCI, and AD subjects, OASIS is
often a more preferred option than other datasets, especially for demographic studies and early detection models.
Longitudinal Data (Disease Progression, Treatment Response): MIRIAD, and to a lesser extent AIBL, although more
limited in availability, provides longitudinal data,so that these data can be used to investigate disease progression and
response to treatment over time, for example [15].

The decision of a dataset in model development has to consider Read more data completeness, balance across disease
stages fundamental to patient cohort data selection: a systematic review; frequency of follow-up visit; and the presence
of interpretable clinical features. For example, NACC and OASIS datasets may be more suitable for explainable AI
(XAI) framework developments, whereas ADNI and AIBL offer a vast source for assessing high-dimensional imaging
deep learning applications.

In summary, the diversity of datasets currently available allows researchers to align their methodological strategies with
the specific clinical questions they aim to address. However, the challenge remains in harmonizing cross-dataset
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variability, especially when attempting to generalize findings or build unified models. Future efforts should focus on
integrating these datasets through common data models and federated learning frameworks, while ensuring patient
privacy and data consistency across sites.

7.2 Neuroimaging Data

Alzheimer’s disease poses unprecedented challenges to current healthcare systems. Reliable diagnosis and accurate
prognosis of AD are important for early intervention and treatment. Development of neuroimaging techniques provides
an opportunity to estimate the underlying pathology related to clinical progression of AD. However, the overwhelming
amount of data from neuroimaging studies requires new data analysis algorithms.

Machine learning approaches have been widely used to analyze imaging data in AD. Classification methods based on
machine learning have generally been more successful when high-quality data are available [16].

Multiple imaging modalities can be used to predict AD risk and progression. Multimodal brain MRI contains
complementary information of neurodegenerative processes ones available brain mortometry and connecto-sphere
methods for training predictive models on multimodal MRI-derived brain morphometry and white matter structural
connectomes images may thus improve accuracy of classification for AD, mild cognitive impairment (MCI) and
subjective memory complaints (SMC) compared with benchmark models trained on cerebrospinal fluid (CSF)
biomarkers [17]. Pattern classification of obtained images enables identification of diagnostic or prognostic markers for
early AD from large neuroimaging data.

Traditional computer-aided diagnosis approaches in neuroimaging have generally involved linear classifiers such as
support vector machines (SVM) applied to biologically relevant features at voxel or regional level. Whole-brain
approaches generally achieve higher classification accuracy than region-based methods, and the use of data pre-
processing methods such as the DARTEL registration package can also have a significant impact on results. Transition
towards non-linear methods, especially artificial neural networks (ANNs), for Alzheimer's dementia diagnosis: the
learning ability of an ANN can be combined with investigations carried out using linear classification methods to
achieve high accuracy diagnosing AD [18].

7.3 Genomic Data

Genomic data have also been leveraged for machine-learning-based AD diagnostics. Support Vector Machines are the
most widely utilized technique for predicting AD from genomic data, while Neural Networks and Natural Language
Processing have recently attracted attention as well [9,10] examine multi-dimensional imaging genomics data—
including genetic single-nucleotide polymorphism (SNP) features—for AD prediction. They find that adding genetic
SNP features to other modalities improves classification and that some features are shared across feature-selection
methods and may have high correlation with the disease. The integration of genetics with other data sources thus
represents a promising direction for future research.

8. Preprocessing and Feature Selection

Conventional feature selection remains a critical stage for Alzheimer’s disease (AD) diagnosis and prognosis, especially
because of the high dimensionality that arises when handling multi-modality data. The extracted features for AD
characterization typically contain redundant or irrelevant elements that can be discarded to enhance performance.
Dimensionality reduction, therefore, aims to identify a subset of data, adhere to the original feature’s geometry, and
preserve identical information [10]. Various methods address this task, including sparse regression, forward and
backward recursion, graph-based selection, and clustering techniques [11].

Feature selection for AD prediction has recently attracted more attention. An evaluation of three state-of-the-art
techniques using the ADNI database reveals that the HGM-FS method achieves superior classification accuracy,
sensitivity, and specificity with linear support vector machines (SVMs). The applied approaches identify both
distinctive and shared features for AD and Mild Cognitive Impairment (MCI) classification. A fusion of multi-
dimensional imaging and genomics data further enhances prediction, with PET modality yielding the highest accuracy.
Although individual SNP data exhibit weaker discrimination, their integration nonetheless improves classification
performance.

An alternative classification framework incorporates preprocessing, feature extraction, selection, and recognition.
Preprocessing includes an averaging filter that removes irrelevant details. A combined technique involving principal
component analysis (PCA), stepwise linear discriminant analysis (SWLDA), and an artificial neural network
subsequently extracts and identifies the most salient features, thereby simplifying disease classification. The SWLDA
component employs both forward and backward recursion: the former selects the most interconnected features based on
partial Z-test coefficients, while the latter eliminates the least correlated ones. After feature selection, an optimized
neural network performs classification. Experimental results demonstrate that this selection method substantially
contributes to elevated recognition rates, outperforming state-of-the-art systems.

International Journal of Ethical AI Application https://ijeaa.cultechpub.com/index.php/ijeaa

53



9. Case Studies of Machine Learning Applications

Numerous studies apply multiple algorithms, investigating various disease stages and aspects while addressing technical
challenges. The diversity of data modalities, acquisition and preprocessing methods, and algorithms lead to methods
with unique strengths, influencing their applicability in Alzheimer’s disease (AD) diagnosis. Some algorithms require
features derived from medical images, while others process raw volumetric images. Approaches employing hand-
crafted features construct distinct features, often reducing dimensionality compared to image size. For instance, features
extracted from a 2D image (192×192 pixels) possess a dimensionality of 36,864, whereas 3D volumes (182×218×182)
reach 7,208,712. Extracted features can include volumetric or shape properties of brain tissues or regions, signal
intensity of MRI voxels, and brain connectivity measure. A directory of model implementations spanning several
studies offers ready-to-run code that facilitates further development [3].

A methodology using 3D convolutional layers identifies individuals with AD based on brain MRIs without requiring
derived features. Employing a debate network, two models predict AD presence to ensure predictions match MRI
patterns. Spectral features can calculate cerebral blood flow and peak time from arterial-spin-labeling images. Analysis
of spatial patterns using t-distributed stochastic neighbor embedding enables cluster-based classification of AD facing
challenges of high dimensionality and small dataset size [2].

9.1 Early Diagnosis

Early diagnosis of Alzheimer’s disease (AD) remains a challenge because changes in biomarkers are subtle and often
overlooked. Machine learning (ML) models, however, hold promise for identifying at-risk individuals. Many studies
prioritise accuracy over explainability. Using data from the National Alzheimer’s Coordinating Center, researchers
trained support vector machine models on 1024 features derived from 169,408 records. Rule-extraction methods—class
rule mining and stable rule sets—produced human-interpretable rules that aid experts in uncovering key factors in AD
development. Explanation tools such as SHAP and LIME highlighted memory, judgment, communication and
orientation as significant indicators. AD is a neurodegenerative disorder affecting memory and behaviour, characterised
by abnormal protein accumulations that cause brain cell death. Symptoms start with mild memory loss and difficulty in
routine tasks, progressing into disorientation, behavioural changes and impaired self-care [5]. Machine learning
techniques applied to neuroimaging data also show potential for early diagnosis. Several approaches focus on deep
learning algorithms. Datasets like the Alzheimer’s Disease Neuroimaging Initiative (ADNI) and the Open Access Series
of Imaging Studies (OASIS) support these investigations. Deep learning architectures, including convolutional neural
networks, have been evaluated for AD detection using magnetic resonance imaging (MRI) [1]. These ML approaches
provide additional valuable tools for identifying AD at early stages. Machine learning is implemented in different
modes—including classification, regression, clustering and normative modelling—to address disease progression.
Various algorithms—supervised, unsupervised and semi-supervised—are selected for their non-linearity, fault tolerance
and real-time operation abilities, making them suitable for such complex applications [2].

9.2 Progression Prediction

Prediction of progression is of increasing importance to help prioritize patients in urgent need of further examination
and early treatment [14]. Multiple markers can enhance projection of decline, but the contribution of individual features
to performance improvements varies widely [15]. Model performance can be improved by considering temporal
trajectories in multimodal data [16].

Because therapeutic interventions would be most effective in early stages of the disease, prior to extensive neuronal
damage, predicting progression from MCI to AD enables the application of preventative treatments for slowing or
halting decline. Many MCI patients progress to AD; however there is heterogeneity in the timelines of decline and
various studies characterizing subtypes are emerging.

In this context, the prediction of progression for AD subjects with mild cognitive impairment (MCI) is relevant for
enabling early interventions at stages when therapeutic treatments might exert larger effects. To describe the
heterogeneity in AD patients undergoing progression, a probabilistic model was developed that recovers distinct
atrophy and cognitive decline patterns from longitudinal clinical and MRI data. An EM clustering procedure estimates
the model’s parameters and associates each subject to a corresponding pattern.

10. Challenges and Limitations

Despite significant progress in previous years, obstacles remain. These are discussed in further detail below.

One of the primary challenges is the limited availability of high-quality, standardized, and annotated datasets for AD
research. This paucity restricts algorithm development and impedes widespread adoption. Model generalizability also
remains an open issue, as performance often declines substantially when models trained on one dataset are tested on
external datasets [3]. AD pathology is highly heterogeneous and influenced by multiple factors such as genetics,
lifestyle, environment, and co-morbidities, necessitating techniques capable of managing such variability and
complexity. Interpretability is likewise a critical concern; transparent models and recommendations enable more
informed clinical decisions and bolster trust among users.
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10.1 Data Quality Issues

Data set structure: The data set has 1024 features that were reduced to a subset for modelling. Representation learning
techniques were used to automatically select and construct representations for input data, resulting in 71 representations.
Initially, eight crucial features relevant to Alzheimer’s dementia were selected before applying representation learning.
Feature selection prior to representation learning is recommended to mitigate potential negative impacts on data quality.
Sample size and class balance are important for determining the applicability of representation learning. A sample of
approximately 1200 with balanced classes allowed for effective representation learning and sufficient data space for
model training [5].

Data quality: The data set contained approximately 20% missing values, evenly distributed across classes. Missing data
were treated as invalid values, following guidelines that imputation can adversely affect data quality.

10.2 Interpretability of Models

The adoption of complex ML models often involves a trade‑off between accuracy and explainability. Identifying crucial
features and enabling domain‑experts’ understanding of the main reasons behind the model’s decision is still
challenging [17]. Nonetheless, enhancing model explainability is paramount. Two rule‑extraction approaches—class
rule mining and stable and interpretable rule set for classification—yielded human‑understandable rules and pinpointed
the Clinical Dementia Rating tool as a key predictor. Alzheimer’s disease (AD) entails abnormal amyloid beta and tau
protein accumulation with progressive symptoms such as memory loss, disorientation, and mood changes. ML methods
have analyzed multi‑modal datasets for early diagnosis and risk prediction, potentially facilitating timely intervention
and mitigation of progression.

11. Conclusion

This review provided a comprehensive synthesis of recent advances in the application of machine learning techniques to
Alzheimer’s disease (AD) diagnosis, prognosis, and progression modeling. The reviewed literature covered a broad
spectrum of methods, ranging from classical supervised algorithms like Support Vector Machines and Random Forests
to more sophisticated deep learning architectures such as Convolutional and Recurrent Neural Networks. Supervised
and hybrid models showed good predictive performance in multi-study early stage detection, disease classification and
cognitive decline trajectory prediction.

We focused on the multiple modalities that may affect the accuracy and generalizability of a model: MRI, PET, genetic
profiles, and clinical measures. The incorporation of multimodal data was a recurrent best practice for enhancing
robustness and clinical utility. In addition, the vital problem of high-dimensional data was addressed, and by employing
methods such as feature extraction (e.g. PCA) and feature selection (e.g. SWLDA) l outside the existing features, and
ensemble selection strategies, predictive performance was enhanced.

Study characteristics on performance varied greatly due to differences in datasets, preprocessing, and reporting. Even
though common metrics such as accuracy, AUC and f1 score can be useful at an early-stage point, a higher emphasis on
cross-cohort validation and model interpretability is required. Although multiple higher-quality datasets exist like a
large ADNI and NACC, but will still face the limitation of data imbalance, data heterogeneity and data limitation
accessing for better generalization of the models.

One of the most showcased topics within the review is the low level of incorporation of XAI frameworks in a clinical
machine learning pipeline scenario. Methods like SHAP and LIME are available in the literature, but rarely used in
research related to Alzheimer´s disease. Improving clinical adoption will only be realized when balanced models are
created in which predictive performance is maximized, but not at the expense of the transparency and interpretability
that clinical adoption requires, and this represents an important future avenue of work.

Despite the apparent groundbreaking potential of using machine learning for the prediction of Alzheimer disease, this
potential will only be realized when the spirit of shared databasing, high emphasis on explainable systems, and rigorous
evaluation in terms of clinical validity with respect to its complexity are prioritized.
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